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Theoretical consideration has been given to the reflection of continuous and pulsed longitudinal and trans-
verse acoustic waves from the film of a dissipative medium which is in contact with a solid-state half-space.
It has been shown that the reflection coefficient and its phase substantially depend on the coefficient of at-
tenuation of ultrasound in the dissipative-medium film and on its phase thickness. The shape of the reflected
acoustic pulsed signal has been calculated using software. The application of the results obtained to investi-
gation of the acoustic properties of viscous fluids is discussed.

Introduction. The reflection of continuous and pulsed acoustic vibrations from the interface of media has
been studied theoretically and experimentally in sufficient detail [1, 2]. Nonetheless, the case of reflection of an acous-
tic wave from a medium possessing a high absorption of sound vibrations is unknown to us and can turn out to be
of interest in both scientific and applied aspects. Earlier, we considered theoretically the reflection and transmission of
longitudinal acoustic (continuous and pulsed) signals by a plane boundary of a solid body with a strongly dissipative
medium (SDM) for which one can use a viscous fluid or an organic material [3–5]. We also analyzed the propagation
of such acoustic vibrations through the layer of an SDM between two solid-state half-spaces. In all the indicated cases
we found the reflection and transmission coefficients for an acoustic wave; these coefficients had a complex form dif-
ferent from the known Fresnel formulas [2] and depended on the dissipative-loss parameter of the SDM determined by
the medium’s viscosity and thermal conductivity. The results of theoretical investigations were confirmed by the ex-
perimental observations of the propagation of continuous longitudinal acoustic waves of the frequency range 1–10 Hz
and of pulsed longitudinal acoustic signals with a frequency of 3.5 and 5 MHz of their fundamental carrier (rf) har-
monic [5]. As the SDM we used a compound — epoxy resin with a hardener. It is the most available (as far as the
preparation is concerned) and efficient object with a high and significantly variable viscosity in the process of harden-
ing. Depending on the percentage of the compound used, in the course of its hardening, the coefficient of reflection
of the longitudinal acoustic pulsed signal of a fundamental frequency of 3.5 MHz which propagated in the acrylic
plastic was 14 times relative to its initial value, where one part of the hardener by volume was added to two parts of
the epoxy resin by volume. Simultaneously with the change in the reflection coefficient we observed a reduction in the
duration of the reflected signal from τ = 3 µsec to τ = 1.5 µsec, i.e., the spectrum of the reflected signal became
wider.

It should be noted that the state of the SDM has a qualitative influence on the reflection and transmission co-
efficients and on the phase of both continuous and pulsed acoustic signals. Since phase measurements are more accu-
rate than amplitude ones, one can judge from them the absorption of sound in the SDM and, by employing the
method of the inverse problem, restore the time dependence of the viscosity of the substance prepared and visualize
the readiness of one technological product or another for use.

For such investigations it is necessary to consider the distinctive features of reflection of an acoustic signal
from the boundary between a solid body and an SDM film coating it. This enables one to relate the coefficient of re-
flection of the wave and its phase and spectrum to the characteristics of the state of the coating and its adhesion sta-
bility and to provide the possibility of controlling flexibly the synthesis of the substances of the coating with
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prescribed optimum properties and of decreasing, at the same time, the energy consumption in the technological proc-
ess and increasing the service life of the coatings.

Reflection of Longitudinal Sound from the SDM Film. Let a continuous harmonic longitudinal wave be in-
cident on an SDM layer from the solid half-space 1; the wave is partially reflected and penetrates into the layer (Fig.
1). The wave equations for the wave in each material of the layered structure are written as follows [2]:

ρ1u
..

x = c1ux,xx ,   ρ2u
..

x = c2ux,xx + b2ux,xx t , (1)

where ux,xx = ∂2ux
 ⁄ ∂x2 and ux,xx t = ∂3ux

 ⁄ ∂2x∂t. The coefficient of reflection of sound α in the film is unambiguously
expressed in terms of the dissipative-loss parameter b2 according to the expression α = ω2b2

 ⁄ 2ρ2s2 long
3 .

Solutions for the incident and reflected waves are sought in standard form [1]:

ux
i
 = u10

i
 exp [i (k1x − ωt)] ,   ux

r
 = u10

r
 exp [i (− k1x − ωt)] ,

ux = u0
+
 exp (− k′′x) exp [i (k′x − ωt)] + u0

−
 exp (− k′′x) exp [i (− k′x − ωt)] ,

(2)

where k1 = ω ⁄ s1 long is the wave number.
The boundary conditions represent a continuity of elastic displacements and stresses at the boundary of the

media and have the form

ux
i
 + ux

r
 = ux ,   c1ux,x

i
 + c1ux,x

r
 = c2ux,x + b2ux,x t   for   x = 0 ,

c2ux,x + b2ux,x t = 0   for   x = d ,
(3)

where ux,x = ∂ux
 ⁄ ∂x and uu,x t = ∂2ux

 ⁄ ∂x∂t.
The solutions (2) satisfy the corresponding wave equations (1) and, being substituted into (3), yield the system

of linear equations to determine the reflection coefficient Rω which is expressed by the relation

Rω = 
A − iZ1 long

A + iZ1 long

 ,   A = Z2 long (1 − ix) 






i − 

x
1 ⁄ 2

[(1 + x
2)1 ⁄ 2 + 1]

1 ⁄ 2







 
exp (γ) exp (− iβ) − exp (− γ) exp (iβ)

exp (γ) exp (− iβ) + exp (− γ) exp (iβ)
 , (4)

where Z1 long = ρ1s1 long, Z2 long = ρ2s2 long, β = k′d, γ = k′′d, and x = ω ⁄ ωm.
By numerical methods (using a computer) we have calculated the frequency dependence of the modulus of the

reflection coefficient and its phase ΨRω = k′d on x (see Fig. 2) for layered structure containing an epoxy-resin film.
The reflection coefficient is Rω = −1 for ω → 0 and Rω→ 1 for ω → ∞. With change in the frequency when nλ ⁄ 4
wavelengths fit into the layer thickness the extrema of Rω appear, i.e., the oscillations of the coefficient of reflection
of the wave occur.

In addition to the amplitude coefficient of reflection found, of interest are the coefficients of reflection of the
velocity wave Ru = u

. r ⁄ u
. i, the pressure wave Rp = pr ⁄ pi, and the intensity wave RJ = Jr ⁄ Ji. Since, according to (2),

differentiation with respect to time does not change condition (3), Ru
.  = Rω. By virtue of the existence of the relation

between the pressure and the vibrational velocity  p ⁄ u
.
 = %Z1, where the upper sign is taken for the wave propagating in

the positive direction x while the lower sign is taken for the wave propagating in the opposite direction, we find

Fig. 1. Propagation of an acoustic wave in a layered structure.
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Rp = −Rω. Consequently, the given frequency dependences of the modulus of the amplitude reflection coefficient and its
phase coincide with the modulus of the reflection of the pressure wave and its phase.

Since the pressure and intensity of the wave in a nondissipative medium are related by the relations Ji =
pi

2 ⁄ 2Z1 and Jr = pr
2 ⁄ 2Z1, the coefficient of reflection of sound is determined by the formula RJ =  Rω

2  .
By virtue of the law of conservation of energy the intensity sound-transmission coefficient in the SDM is

TJ = 1 − RJ, whereas the amplitude transmission coefficient is Tω = 1 + Rω. The entire given intensity in the SDM film
is irreversibly converted to heat. From the practical viewpoint, the recording of reflected signals is more informative
than the recording of attenuated signals transmitted by the SDM film. Therefore, here and in what follows emphasis is
placed on consideration of the processes of reflection of a wave.

From consideration of the reflection of a continuous signal we pass to investigation of the reflection from the
boundary and transmission, by it, of a pulsed acoustic signal which is the closest to an actual signal emitted by an
ultrasonic piezoceramic transducer. At the interface of the media x = 0 such a signal has the shape [3–5]
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i
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


 , (5)

where T = 2π ⁄ ω0 and τ = nT, and n is a certain integer equal to the number of periods of the emitted pulse.
On the basis of the given dependence of Rω and by employing expression (5) for an actual acoustic signal

and direct and inverse Fourier transformations, one can calculate, using a computer, the shape of the reflected signal
for the layered structures indicated above [6].

The calculation results are presented in Fig. 3 in the form of the curves of the pulse swing D and demon-
strate a substantial dependence of the amplitude and phase of the reflected pulse on the frequency ω0 of the funda-
mental harmonic of the pulsed signal. The phase of the reflected pulse is understood with a higher degree of
generalization than is the case for continuous vibrations, namely, as the displacement of the intersection of the emitted
and transmitted pulses and the time axis. The Fourier transformation applied to the emitted ux

i (x, t) and reflected
ux

r(x, t) pulses yields their spectra, which differ [7].
We note that the software used makes it possible to elucidate the distinctive features of reflection for any

shape of the emitted pulses. Analytical calculations are partly possible for the simplest shapes of emitted signals (for

Fig. 2. Coefficient of reflection of longitudinal sound for the aluminum–epoxy
resin structure [a) Z1 long = 17.33⋅106 kg/(m2⋅sec), Z2 long = 3.25⋅106 kg/(m2⋅sec),
s1 long = 6.42 km/sec, s2 long = 2.68 km/sec, ρ1 = 2.70⋅103 kg/m3, and ρ2 =
1.21⋅103 kg ⁄ m3)] and the acrylic plastic–epoxy resin structure [b) Z1 long =
3.1⋅106 kg/(m2⋅sec), s1 long = 2.7 km/sec, and ρ1 = 1.15⋅103 kg/m3)] (the data
are given for the solid phase of the epoxy resin).
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example, for a rectangular signal or several periods of a sine one, which are not practical), but the nontrivial fre-
quency-dependent form of Rω makes it difficult or impossible to analytically find the spectrum and shape of the re-
flected and transmitted signals.

Reflection of Transverse Sound from the SDM Film. Whereas longitudinal waves propagate with a signifi-
cant attenuation in a viscous fluid, the propagation of transverse waves in the fluid is impracticable, according to [1].
Thus, for continuous oscillations of the frequency f = 1 MHz their attenuation is 1.1⋅1026 m−1 (8.6⋅106 dB/m) for a
wavelength of λ = 6 µm and 2.3⋅1017 m−1 (8.6⋅104 dB/m) for λ = 630 µm in glycerin. Nonetheless, for small gaps
d << λ between two solid-state half-spaces we can have the infiltration of a transverse wave because of the presence
of the shear or Stokes viscosity η2, in addition to the volume or second viscosity ξ2, in the real fluid [3]. This cir-
cumstance, in particular, explains the effective transfer of a Rayleigh wave propagating over the upper surface of one
solid-state half-space to the lower surface of the second solid-state half-space contacting the first solid body via a
small fluid gap, which is substantiated theoretically and confirmed experimentally.

When the shear viscosity of the SDM is disregarded the reflection of a transverse wave normally incident on
a plane boundary with the SDM on the source side of the solid body is 100% without a phase shift and is equivalent
to the reflection of this wave from the boundary with vacuum. When the shear viscosity is taken into account a small
penetration of the transverse wave into the SDM (which is rapidly attenuated there) occurs. This distinctive feature is
attributed to the change in the boundary conditions for displacements and stresses and, depending on the phase thick-
ness of the film coating, can produce a significant difference of the amplitude reflection coefficient from unity and the
dependence of the phase of the reflected wave on the viscosity of the SDM and the phase thickness of the film.

Transverse waves fundamentally differ physically from longitudinal ones and have a number of advantages
over them, i.e., low velocity of propagation and higher-than-average sensitivity to the shear acoustic parameter of a
substance. Therefore, in a number of cases it turns out to be more preferable to employ transverse waves and not lon-
gitudinal ones, for example, in investigating the dimensional properties of the coatings of solid-state substrates.

Wave equations in each of the materials of the layered structure will be written as follows [2, 8]:

ρ1u
..

1y = µ1u1y,xx ,   ρ2u
..

2y = b2u2y,xx t , (6)

where b2 = 4η2
 ⁄ 3, u1y,xx = ∂2u1y

 ⁄ ∂x2, and u2y,xx t = ∂3u2y
 ⁄ ∂2x∂t.

The solutions for the incident (i) and reflected (r) transverse waves are sought in the form [2]

uy
i
 = u10

i
 exp [i (k1x − ωt)] ,   uy

r
 = u10

r
 exp [i (− k1x − ωt)] ,

Fig. 3. Incident and reflected longitudinal acoustic signals and the dependence
of their amplitude on the thickness of the SDM film for the aluminum–epoxy
resin (a) and acrylic plastic–epoxy resin (b) structures.
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u2y = u0
+
 exp (− k0x) exp [i (k0x − ωt)] + u0

−
 exp (k0x) exp [i (− k0x − ωt)] ,

(7)

where k1 = ω ⁄ s1t is the wave number for the transverse sound and k0 = (ρ2ω ⁄ 2b2)1 ⁄ 2.
The law of dispersion of sound in a dissipative medium yields the following relations for the phase and group

velocities: vph = ω1 ⁄ 2[2b2
 ⁄ ρ2]1 ⁄ 2 and vgr = 2vph.

The analysis shows that as the frequency increases (ω → ∞) the phase velocity of sound is vph → ∞ and the
group velocity is vgr → ∞ since the SDMs considered were assumed to be Newtonian fluids. The attenuation of sound
in the SDM is α = k0 = (ρ2ω ⁄ 2b2)1

 ⁄ 2.
The boundary conditions are a continuity of elastic displacements and stresses at the boundary of the media

and have the form

uy
i
 + uy

r
 = uy

T
 ,   µ1 (ik1uy

i
 − ik1uy

r) = b2 [u0
+
 (− iω) (− k0 + ik0) + u0

−
 (− iω) (k0 − ik0)]   for   x = 0 ,

b2 [u0
+
 exp (− k0d) exp (ik0d) (− iω) (− k0 + ik0) + u0

−
 exp (k0d) exp (− ik0d) (− iω) (k0 − ik0)] = 0   for   x = d .

(8)

The solutions (7) satisfy the corresponding wave equations (6) and, being substituted into (8), yield the system
of linear equations to determine the reflection coefficient Rω = u10

r  ⁄ u10
i  which is determined by the relation

Rω = 
A − B

A + B
 , (9)

where A = Z
~

2 exp (iπ ⁄ 4)[exp (2Ψ0) − exp (i2Ψ0)] and B = iZ1t [exp (2Ψ0) + exp (i2Ψ0)], Z
~

2 = (b2ρ2ω)1
 ⁄ 2, Ψ0 = k0d.

After simple mathematical manipulations we give the expression for the square of the modulus of the ampli-
tude reflection coefficient:

 Rω
2   = 

g1Z
~

2
2
 − 2g2Z1Z

~
2 + 2g3Z1

2

g1Z
~

2
2
 − 2g2Z1Z

~
2 + 2g3Z1

2
 , (10)

Fig. 4. Coefficient of reflection of transverse sound for the aluminum–epoxy
resin structure [a) Z1t = 8.21⋅106 kg/(m2⋅sec), Z2t = 1.39⋅106 kg/(m2⋅sec), s1t =
3.04 km/sec, and s2t = 1.15 m/sec)] and the acrylic plastic–epoxy resin struc-
ture [b) Z1t = 1.26⋅106 kg/(m2⋅sec) and s1t = 1.1 km/sec]. d, m; ω, MHz.
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where g1 = exp (4Ψ0) − 2 exp (2Ψ0) cos 2Ψ0 + 1, g2 = exp (4Ψ0) − 2 exp (2Ψ0) sin 2Ψ0 − 1, and g3 = exp (4Ψ0)
+ 2 exp (2Ψ0) cos 2Ψ0 + 1. It is easy to show that in all the cases  Rω

2   ≤ 1.
For the phase of the reflected wave we obtain the relation

tan ΨRω
 = − 

2g2Z1tZ
~

2

g1Z
~

2
2
 − 2g3Z1t

2  . (11)

We have numerically calculated (using a computer) the frequency dependences of the modulus and phase of
the reflection coefficient for different values of the coating-film thickness (Fig. 4). At low frequencies and for a small
thickness of the coating, the reflection is total with inversion of the signal phase. As the frequency increases the re-
flection is total no longer; it decreases significantly due to the processes of absorption of the incident ultrasonic energy
in the film coating and a certain phase shift of the reflected signal occurs. For example, when ω = 2π⋅107 Hz and
d = 10−4 m,  Rω  = 0.7 and ϕ = 1.45 for aluminum and  Rω  = 0.46 and ϕ = 1.15 for acrylic plastic. Detailed analysis
of the coefficient of reflection of the signal shows that at certain and quite practical frequencies f = 1–10 MHz one can
measure the thickness of superthin coatings using both amplitude (by Rω) and more sensitive phase (by ϕ) instrumen-
tation. For example, for the measurement frequency f = 10 MHz the changes in the reflection coefficient and its phase
are, respectively, of the order of 10−4 and 10 for the two cases in question. Thus, whereas it is impossible to record
the attenuation of the reflected signal by easily available amplitude instrumentations, the recording of the phase shift
(given above) is realizable since the accuracy of phase measurements attains 10−2 degrees or higher. We note that the
phase of the reflected signal is ΨRω = −π when ω = 0 and ΨRω → 0 when ω → ∞, whereas the reflection coefficient
Rω has its minimum when ω C 2π⋅107 Hz and Rω → 1 when ω → 0 and when ω →∞. With change in the frequency
when nλ ⁄ 4 wavelengths fit into the layer thickness, the extrema of Rω occur, which suggests the oscillation of the re-
flection coefficient and its phase.

We note that for transverse waves the velocity, pressure, and intensity reflection coefficients correspond to the
relations given earlier for longitudinal waves.

On the basis of the dependence of Rω and employing (5), we calculated, using a computer, the shape of the
reflected and transmitted signals in the layered structures indicated above. The calculation results (Fig. 5) demonstrate
a substantial dependence of the amplitude and phase of the reflected signal on the frequency ω0.

Conclusions. In modern electronic production and machine building, of importance is continuous control of
the quality and structure of coatings in the process of their deposition on the substrates of materials. The proposed
method of ultrasonic phase-time measurements can allow the diagnostics of a fine structure of substances which un-
dergo physicochemical transformations as a result of the processes of molecular and laser epitaxy, electro- and photoli-
thography, electrochemistry, plasma spraying and vacuum deposition, and soldering and brazing. In most of the above

Fig. 5. Incident and reflected transverse acoustic signals for the aluminum–
epoxy resin (1) and acrylic plastic–epoxy resin (2) structures. d, m.
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cases, we have a strong local heating and phase, aggregative, and chemical transformations in individual regions of a
product which, under such conditions, are SDMs in physical properties since changes in the density and the elastic
moduli and an increase in the absorption of ultrasonic vibrations occur in these regions.

NOTATION

τ, duration of the acoustic pulse, sec; ρ1, density of the material of the solid-state half-space, kg ⁄ m3; ux, com-
ponent of the elastic displacement in the longitudinal wave, m; c1, elastic modulus for the solid-state half-space,
J ⁄ m3; ρ2, density of the SDM film, kg ⁄ m3; c2, elastic modulus for the SDM film, J ⁄ m3; b2, parameter of dissipative
loss in the film, Pa⋅sec; α, sound-absorption coefficient, dB/m; ω, cyclic frequency, Hz; s2 long, velocity of the longi-
tudinal wave in the film, m/sec; ux

i , emitted longitudinal acoustic signal, m; u10
i , amplitude of the emitted acoustic sig-

nal, m; i, imaginary unit; k = k′ + ik′′, complex wave number for the film, m−1; k1, wave number for the solid-state
half-space, m−1; t, time, sec; ux

r , longitudinal acoustic signal reflected from the film, m; u10
r , amplitude of the acoustic

signal reflected from the film, m; ux, elastic longitudinal displacement, m; u0
+, amplitude of the acoustic signal propa-

gating in the forward direction, m; u0
−, amplitude of the acoustic signal propagating in the backward direction, m; x,

coordinate along the abscissa axis, m; d, SDM-film thickness, m; Rω, amplitude reflection coefficient; Z1 long, acoustic
impedance of the solid-state half-space for longitudinal sound, kg/(m2⋅sec); Z2 long, acoustic impedance of the film for
longitudinal sound in the absence of dissipation, kg/(m2⋅sec); ωm, characteristic frequency of the SDM, Hz; ΨRω, phase
of the reflected wave, rad; λ, wavelength, m; Ru

. , reflection coefficient of the velocity wave; Rp, reflection coefficient
of the pressure wave; p, pressure, Pa; pi, pressure in the incident wave, Pa; pr, pressure in the reflected wave, Pa;
RJ, reflection coefficient of the intensity wave; Ji, intensity of the incident wave, W/m2; Jr, intensity of the reflected
wave, W/m2; Tω, amplitude sound-transmission coefficient; TJ, intensity sound-transmission coefficient; Γ, dimensional
parameter determining the envelope of the incident acoustic pulsed signal; T, period of the pulse, sec; ω0, frequency
of the fundamental harmonic of the signal, Hz; θ, Heaviside function; D, pulse swing; f, frequency, Hz; ξ2, volume
viscosity, Pa⋅sec; η2, shear viscosity, Pa⋅sec; µ1, second Lame′ coefficient; u1y, component of the elastic displacement
in the transverse wave for the solid-state half-space, m; u2y, component of the elastic displacement in the transverse
wave for the film, m; uy

i , emitted transverse acoustic signal, m; uy
r , reflected transverse acoustic signal, m; s1t, velocity

of the transverse wave in the solid-state half-space, m/sec; vph, phase velocity, m/sec; vgr, group velocity, m/sec; uy,
transmitted transverse acoustic signal, m; Z1t, acoustic impedance for transverse sound, kg/(m2⋅sec); Z

~
2, effective acous-

tic impedance of the SDM, kg/(m2⋅sec); Ψ0, phase thickness of the SDM film, rad; ϕ, phase shift of the reflected sig-
nal, rad. Subscripts and superscripts: long, longitudinal wave; 1, medium 1 (see Fig. 1); 2, medium 2 (Fig. 1); x,
longitudinal displacement; y, transverse displacement; i, incident wave; r, reflected wave; +, positive direction; –, nega-
tive direction; ω, frequency, frequency-dependent; u

.
 = ∂u ⁄ ∂t; p, pressure; J, intensity; gr, group velocity; ph, phase ve-

locity; t, transverse wave.
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